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Abstract—Sparse Tensor Compilers (STCs) have emerged
as critical infrastructure for optimizing high-dimensional data
analytics and machine learning workloads. The STCs must
synthesize complex, irregular control flow for various compressed
storage formats directly from high-level declarative specifications,
thereby making them highly susceptible to subtle correctness
defects. Existing testing frameworks, which rely on mutating
computation graphs restricted to a standard vocabulary of
operators, fail to exercise the arbitrary loop synthesis capabilities
of these compilers. Furthermore, generic grammar-based fuzzers
struggle to generate valid inputs due to the strict rules governing
how indices are reused across multiple tensors.

In this paper, we present TENSURE, the first extensible black-
box fuzzing framework specifically designed for the testing
of STCs. TENSURE leverages Einstein Summation (Einsum)
notation as a general input abstraction, enabling the generation of
complex, unconventional tensor contractions that expose corner
cases in the code-generation phases of STCs. We propose a novel
constraint-based generation algorithm that guarantees 100%
semantic validity of synthesized kernels, significantly outper-
forming the ∼3.3% validity rate of baseline grammar fuzzers.
To enable metamorphic testing without a trusted reference, we
introduce a set of semantic-preserving mutation operators that
exploit algebraic commutativity and heterogeneity in storage
formats. Our evaluation on two state-of-the-art systems, TACO
and Finch, reveals widespread fragility, particularly in TACO,
where TENSURE exposed crashes or silent miscompilations in a
majority of generated test cases. These findings underscore the
critical need for specialized testing tools in the sparse compilation
ecosystem.

I. INTRODUCTION

Over the past decade, the demand for efficient execution of
scientific computing and deep learning workloads has surged,
pushing tensor compilers to the centre of modern systems.
Compiler frameworks such as TVM [1], TensorRT [2], Tri-
ton [3], and XLA [4] aggressively optimise tensor computa-
tions by lowering high-level programs into hardware-specific
code. Concurrently, tensor sizes are expanding rapidly while
hardware scaling plateaus [5]. This divergence necessitates
performing computation directly on compressed tensor storage
formats.

However, it is non-trivial to construct optimized tensor
computations, or kernels, for compound operations on various

compressed tensor data storage formats. Unlike dense arrays,
compressed formats do not support efficient random access;
consequently, the resulting kernels require sophisticated loop
nests to synchronize access across multiple sparse operands.
Therefore, a compiler-based approach is widely advocated for
sparse tensor operations. This need has driven the emergence
of Sparse Tensor Compilers (STCs) as a dedicated class of
tools for performing computations on compressed storage
formats [6]–[11].

Unfortunately, the complexity of sparse traversal sched-
ules significantly exceeds that of dense counterparts [6], [9],
[10], [12]. The need to support diverse compressed data
structures creates a large surface area for subtle correctness
bugs—including iteration faults and memory safety viola-
tions—particularly when chaining multiple tensor operations.

Recent real-world failures demonstrate that compiler bugs
can cause severe damage even in simpler dense settings. For
instance, Anthropic traced a degradation in Claude’s responses
to an XLA miscompilation [13]. Diagnosing such issues is
notoriously difficult because model outputs reveal little about
the underlying compiled program, and developers implicitly
trust the compiler. Sparse tensor pipelines amplify this chal-
lenge: the control flow is far more intricate, making defects
significantly harder to isolate.

In this paper, we introduce an extensible automated testing
framework specifically designed to verify the functional cor-
rectness of STCs. Existing approaches based on differential
testing [14], [15] to validate general-purpose compilers are
fundamentally incompatible with tensor compilers because of
the non-negligible number of false positives due to variations
in numerical accuracy across different execution environments
[16]. Therefore, TENSURE adopts an approach similar to
POLYJUICE, leveraging the same execution environment for
metamorphic testing.

Conventional semantic-preserving mutation techniques used
in traditional metamorphic testing, such as dead-code injec-
tion [17], instruction padding [18], and control-flow restructur-
ing [14], [19]—rely on mutating imperative control structures
(e.g., if blocks, loops, and statement ordering). However, STCs
typically operate on high-level declarative specifications, such
as Einsum (Einstein summation) notation [20], where explicit
control flow is absent. Consequently, these standard imperative
mutations are inapplicable, as the control flow is not defined
in the source but is synthesized during compilation, leaving
no target for traditional code transformations.

Furthermore, the landscape of STCs is characterized by
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significant syntactic and semantic fragmentation. Prominent
frameworks like TACO [6], Finch [7], and the MLIR Sparse
Dialect [9] each expose distinct declarative DSLs and sup-
port varying subsets of the einsum standard. This diver-
gence is compounded by heterogeneous underlying infrastruc-
tures—ranging from C++ template libraries to LLVM-based
lowering pipelines. Therefore, creating a unified testing frame-
work is non-trivial; a test case valid for one tool is syntactically
incompatible with another. To bridge this interoperability gap,
an intermediate representation is required to abstract the core
semantic features of STC programs, decoupling test generation
from implementation-specific syntax.

Previous work on testing dense tensor compilers, such
as NNSmith [21] and PolyJuice [22], relies on constructing
computation graphs—directed acyclic structures where nodes
represent fixed high-level operators (e.g., MatMul, Conv2d)
connected by data dependencies. This approach is inherently
limited by the fixed vocabulary of the standard operator li-
brary; it tests the compiler’s ability to optimize known patterns
but fails to stress-test its capability to synthesize loop nests
for arbitrary, unconventional tensor operations. Crucially, these
frameworks also lack any representation of compressed storage
formats, the backbone of STCs, thereby missing the complex
traversal constraints required for sparse compilation.

To the best of our knowledge, no existing testing frame-
work specifically targets functional correctness for STCs. This
leaves a substantial portion of the tensor-compiler ecosystem
effectively untested. We address this gap by developing a
fuzzer that generates valid tensor kernels, translates them
into the target sparse-tensor DSL, and creates semantically
equivalent program variants for metamorphic testing. Unlike
general-purpose fuzzing, where large sets of rewrite rules yield
many equivalent variants, single-kernel tensor programs offer
limited opportunities for mutation.

We evaluated TENSURE on two state-of-the-art systems:
the C++-based TACO [6] and the Julia-based Finch [7]. Our
experiments revealed significant robustness issues in TACO,
where the fuzzer exposed crash-inducing inputs or miscompi-
lations in over 60% of generated test cases. Furthermore, the
successful integration with Finch validates the framework’s
extensibility to diverse compiler architectures. Collectively,
these preliminary results highlight the pervasive fragility of the
current sparse tensor compilation infrastructure and demon-
strate the efficacy of TENSURE in detecting latent defects.

This paper makes the following contributions:
• Extensible STC Fuzzer: To the best of our knowledge,

we present TENSURE, the first language-agnostic black-
box fuzzing framework specifically designed to validate
STCs.

• Domain-Specific Mutation Operators: We define a
set of mutation operators that exploit Storage Format
Heterogeneity and Algebraic Commutativity to generate
semantically equivalent STC programs.

• Constraint-Based Generation Algorithm: We formalize
and implement a generation algorithm that solves context-
sensitive dimensional constraints to synthesize einsum ex-

pressions. Unlike standard grammar-based fuzzers, which
achieve a validity rate of only ∼3.3%, our approach guar-
antees 100% semantic validity, enabling high-throughput
testing of deep compilation passes.

The remainder of this paper is structured as follows. Section
II provides background on sparse compilation, while Section
III motivates the need for specialized fuzzing. The details
of the design of TENSURE are provided in the Section IV.
We present a preliminary evaluation of the tool in Section V
Sections VI and VII discuss the limitations and related work,
respectively, and we conclude the paper in Section VIII.

II. BACKGROUND

A. Tensors and Einsum

Tensors are multi-dimensional arrays, and their computa-
tions can be concisely expressed using einsum notation [23].
The einsum notation generalizes tensor operations by implying
summation over shared indices between tensors, eliminating
the need for explicit summation symbols.
A(j) = B(i, j) ∗ C(i) is a simple kernel with tensor

contraction expressed in einsum notation. As formalized by
the summation Aj =

∑
iBijCi, this operation defines the

output tensor Aj (or A(j)) by accumulating the product of
Bij and Ci along the shared index i. It is important to note
that while einsum specification is declarative—defining the
data dependencies rather than the execution flow—it implies a
reduction over the i dimension. In other words, this operation
performs a reduction over the i dimension while accumulat-
ing contributions from Bij weighted by Ci. For reference,
A(i, j) = B(i, k) ∗ C(k, j) presents the standard General
Matrix–Matrix Multiplication (GeMM) using the declarative
einsum notation, while Aij =

∑
kBikCkj shows the corre-

sponding algebraic definition expressed as summation.

B. Tensor Compilers and Loop Lowering

Tensor compilers, such as TVM [1], XLA [4], and
MLIR [24], serve as bridges between high-level mathematical
notation and efficient machine code. To insulate scientists from
low-level implementation details, these frameworks expose
declarative DSLs. While einsum notation serves as a powerful
generic abstraction for defining arbitrary contractions, modern
compilers also support direct declarative definitions for ubiq-
uitous tensor operations, such as matrix multiplications and
2D convolutions.

The fundamental task of these compilers is lowering—the
automated translation of these declarative specifications into
optimized, imperative loop nests. Algorithm 1 presents a
pseudo-code representation of the lowering output for the
kernel A(j) = B(i, j) ∗ C(i). Even for dense tensors, this
translation is non-trivial: a concise mathematical expression
expands into a complex sequence of nested loops, explicit
memory addressing, and boundary checks. Consequently, the
cyclomatic complexity of the generated code scales rapidly
with the dimensionality of the tensors and the depth of the
operation chain, creating significant potential for faults during
lowering.
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1 int main() {
2 int j_A = 0;

3 for (int i_C=C_col_ptr[0]; i_C < C_col_ptr[1]; i_C++) {

4 int i = C_row_ind[iC];

5 for (int j = 0; j < B2_dimension; j++) {

6 // B2_dimension->Dimension of the B's column axis

7 A_values[j_A] = 0.0;

8 int j_B = i * B2_dimension + j;

9 A_values[j_A] += B_values[j_B] * C_values[i_C];

10 j_A++;

11 }

12 }

13 }

Listing 1: TACO Generated Program (Buggy)

1 int main() {
2 for (int i_C=C_col_ptr[0]; i_C < C_col_ptr[1]; i_C++) {

3 int i = C_row_ind[i_C];

4 int j_A = 0;

5 for (int j = 0; j < B2_dimension; j++) {

6 // B2_dimension->Dimension of the B's column axis

7 int j_B = i * B2_dimension + j;

8 A_values[j_A] += B_values[j_B] * C_values[i_C];

9 j_A++;

10 }

11 }

12 }

Listing 2: Manually Corrected Program

Fig. 1: A critical miscompilation detected by TENSURE for the kernel A(j) = B(i, j) · C(j). Listing 1 (Left) shows the
original TACO-generated code containing an initialization error in the sparse iteration loop. Listing 2 (Right) shows the
manually corrected implementation, highlighting the specific control flow logic required for correct execution.

C. Compressed Data Structure

Unlike dense tensors, where almost all entries are nonzero,
most real-world large-scale tensors are highly sparse. For
example, the Amazon Reviews tensor in particular, contains
1.5 x 1019 components corresponding to 107 exabytes of data
(assuming 8 bytes are used per component), but only 1.7 × 109

of the components (13 gigabytes) are non-zero [6], [25]–[27].
Sparse tensors address this imbalance by representing data in
compressed formats such as Coordinate (COO), Compressed
Sparse Row (CSR), Compressed Sparse Column (CSC) [28],
or more specialized hybrid layouts. These formats store only
nonzero values, along with their index metadata, allowing
compilers to skip redundant iterations and avoid unnecessary
multiplications and additions by zero. This is critical for
achieving efficient computation on large-scale tensor work-
loads.

D. Sparse Tensor Compilers

The Tensor Algebra Compiler (TACO) [6] pioneered the
automated generation of sparse tensor kernels and serves as
a primary subject of our evaluation. Following this prece-
dent, major infrastructure frameworks including MLIR [9],
TVM [8], XLA [29], and PyTorch [11], [30] have introduced
sparse extensions. However, despite this broad interest, sup-
port for sparse operations in these systems remains largely
experimental. The inherent complexity of sparse compilation
has hindered the development of fully robust, production-ready
implementations, resulting in a landscape of beta-level features
that lack correctness guarantees. This pervasive fragility un-
derscores the critical need for a dedicated testing framework
to validate these evolving STCs.

E. Automated Testing Techniques

Compiler validation typically relies on the synergy between
robust test oracles and structured input generation. Differ-
ential and metamorphic testing has established itself as the
gold standard for validating general-purpose and dense tensor
compilers [14], [15], [17], [19], [21], [22]. Fundamentally,

this approach is black-box and relies on the invariant that
semantically equivalent inputs—or the same input executed
on different compiler implementations—must yield identical
execution results. This simplicity allows it to detect subtle
functional correctness bugs without requiring a formal speci-
fication of the compiler’s internal logic.

To drive these differential and metamorphic testing cam-
paigns, compilers require highly structured inputs that satisfy
strict syntactic rules. Grammar-based Fuzzing addresses this
by generating syntactically valid test cases through adherence
to a formal language specification, typically defined using
standard Backus-Naur Form (BNF) or tool-specific Extended
BNF (EBNF) dialects such as ANTLR. Unlike unstructured
mutational fuzzers that apply random bit-flips to seed inputs,
grammar-based tools, such as Grammarinator [31], Lang-
Fuzz [32], and Nautilus [33] construct inputs by performing
random walks over the grammar’s derivation tree. This tech-
nique is particularly effective for testing language processors,
as it ensures that the generated inputs successfully pass the
parser and exercise the deeper semantic analysis and lowering
phases of the compiler.

III. MOTIVATION

1 int main() {
2 for (int iC = C1_pos[0]; iC < C1_pos[1]; iC++) {

3 int i = C1_crd[iC];

4 for (int j = 0; j < B2_dimension; j++) {

5 int jB = i * B2_dimension + j;

6 A_vals[j] = A_vals[j] + B_vals[jB] * C_vals[iC];

7 }

8 }

9 }

Listing 3: Correct TACO-Generated Program for the Dense
Case. Implements the kernel A(j) = B(i, j) ·C(i) where A is
a dense vector, B is a CSR matrix and C is a sparse vector.
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Algorithm 1: Dense Tensor Computation
A(j) = B(i, j) · C(j)

Input : Dense tensor B ∈ Rm×n, vector C ∈ Rn

Output: Vector A ∈ Rn such that Aj = Bij · Cj

1 for j ← 0 to n− 1 do
2 A[j]← 0
3 for i← 0 to m− 1 do
4 A[j]← A[j] +B[i][j] · C[j]

5 return A

Algorithm 2: Sparse Tensor Computation (CSR)
A(j) = B(i, j) · C(j)

Input : Sparse tensor B in CSR format with arrays:
• B.val: nonzero values,
• B.col idx: column indices,
• B.row ptr: row pointers;

Vector C ∈ Rn

Output: Vector A ∈ Rn such that Aj =
∑

i Bij · Cj

1 Initialize A[j]← 0 for all j = 0, 1 . . . n− 1
2 for i← 0 to m− 1 do
3 for k ← B.row ptr[i] to B.row ptr[i+ 1] do
4 j ← B.col idx[k]
5 A[j]← A[j] +B.val[k] · C[j]

6 return A
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0


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A

=

0 4 0
2 8 0
1 0 0


︸ ︷︷ ︸

B

×

02
5


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C

=

0 · 0 + 2 · 2 + 1 · 5
4 · 0 + 8 · 2 + 0 · 5
0 · 0 + 0 · 2 + 0 · 5

 (1)

To illustrate the challenges of sparse tensor compilation,
consider the kernel: A(j) = B(i, j) ·C(j). Here, each column
of the tensor B is scaled and reduced by the elements of
vector C to compute the elements of A. Algorithm 1 de-
picts the standard lowering for dense tensors, where elements
are accessed via direct addressing. In contrast, Algorithm 2
demonstrates the corresponding pseudocode when B is stored
in CSR format. The transition to sparse storage forces the
compiler to replace affine loop nests with complex data-
dependent irregular iterations that traverse compressed index
arrays. Regardless of the underlying format, the computation
is expected to produce the deterministic results shown in
Equation 1.

To demonstrate the impact of output storage formats on
code generation, Listing 1 and Listing 3 present the code
generated by TACO for this kernel using different storage
formats for the output tensor A. While the dense output
variant executes correctly, the sparse output variant produces
erroneous results. The defect, exposed by TENSURE, stems
from a miscompilation in the loop initialization. As identified

in Listing 1 (Lines 2 and 7), the compiler fails to reset the
coordinate tracker j A within the loop correctly. The corrected
implementation, shown in Listing 2, moves the initialization
inside the loop body. This example underscores the inherent
fragility of STCs: even elementary kernels can trigger errors
that evade manual inspection.

Addressing these failures requires automated metamorphic
testing. In the domain of dense tensor compilers, prior work
has relied on Computation Graph-based Fuzzing [21], [22].
This methodology constructs extensive sequences of tensor
operations and mutates the graph topology and individual
operations to generate semantic equivalents. However, this
approach is ill-suited for STCs for three reasons. First, the
overhead of graph management incurs prohibitive latency,
often limiting throughput to approximately four mutant ex-
ecutions per second [22], thereby restricting test coverage.
Second, graph-level mutations produce bloated failure cases
that require computationally expensive minimization to isolate
the root cause. Finally, these tools are constrained to a fixed
library of high-level operators, limiting their ability to stress
the arbitrary iteration patterns defined by general einsum
notation.

Moreover, a wider class of STCs treats tensor operations as
isolated lowering targets. The compilation process resembles
a macro expansion where each einsum expression is trans-
lated into a standalone loop nest, oblivious to the broader
dataflow context. This design characteristic renders graph-
based generation ineffective for metamorphic testing. Because
modifications to one operation in a sequence do not influence
the lowering strategy of its neighbors. Therefore, the search
space for bugs is effectively partitioned by operation. Hence,
a fuzzer that generates long chains of independent operations
merely retests the same isolated expansion mechanisms repeat-
edly, validating the redundancy of graph-level mutation in this
domain.

A potential alternative is to employ generic grammar-based
fuzzers, such as Grammarinator [31], to synthesize einsum
expressions directly. However, the validity of the einsum
notation is governed by context-sensitive constraints. Standard
grammar-based fuzzers, which typically operate on Context-
Free Grammars, lack the semantic awareness to enforce these
cross-reference constraints. Consequently, they produce a high
volume of invalid kernels that are rejected by the compiler
frontend and fail to reach the critical loop-lowering passes.

These limitations motivate the need for a specialized testing
framework. Effective validation of STCs requires a system
capable of (1) generating valid einsum expressions, (2) sys-
tematically mutating the expressions to generate semantically
equivalent programs, and (3) leveraging metamorphic relations
to detect semantic divergence without a reference compiler.

IV. DESIGN & IMPLEMENTATION

Unlike dense tensor compilers, which construct a global
computation graph to manage lowering and optimization
across a sequence of operations, STCs take a different ap-
proach. Rather than maintaining a graph-like structure for the
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Algorithm 3: Random Einsum Expression Generation
Input : N : number of input tensors,

Rmax: maximum tensor rank,
I: pool of index labels

Output: Random einsum expression
A = B1 ∗B2 ∗ · · · ∗BN

Step: 1: Assign indices to input tensors
1 for k ← 1 to N do
2 rk ← UniformRandom(1, Rmax)
3 Bk.indices← randomly select rk distinct indices

from I
4 Update usage count of selected indices

Step: 2: Determine output tensor indices
5 O ← random subset of indices with non-zero usage

Step: 3: Ensure valid reduction indices
6 for each index i ∈ I \ O with usage count = 1 do
7 Add i to a different input tensor to ensure it occurs

at least twice
Step: 4: Assign tensor shapes

8 for each index i ∈ I do
9 assign random dimension di

10 for each tensor Bk do
11 for each j in Bk.indices do
12 Bk.shape[j]← dBk.indices[j]

Step: 5: Construct einsum expression
13 A(O) =

∏N
k=1 Bk(Bk.indices)

14 return A and {B1, . . . , BN}

entire operation sequence, STCs focus on constructing an iter-
ation graph for a single einsum expression in isolation. Hence,
the complexity of STCs lies in synthesizing the loop nests
for individual operations, rather than performing graph-level
rewrites on a multi-node sequence. In this context, chaining
multiple sequences of einsum operations yields diminishing
returns for testing, since the complexity lies in the synthesis
of iterations rather than in the graph topology. Therefore,
our fuzzer diverges from graph-based generation; instead, it
synthesizes a single einsum notation to represent complex
tensor operations, as detailed in Algorithm 3.

A. Random Kernel Generation

While einsum equations appear syntactically simple, their
validity relies on context-sensitive constraints that exceed the
expressive power of CFGs. A fundamental validity rule is that
the set of output indices O must be a subset of the union
of all input indices

⋃
Iin (i.e., O ⊆

⋃
Iin). Therefore, it

implies that the validity of the output symbols is dependent on
the specific symbols consumed earlier in the input sequence.
This dependency violates the Pumping Lemma for Context-
Free Languages [34], classifying valid einsum expressions as
a Context-Sensitive Language.

To synthesize a structurally valid einsum expression, we
view the generation process as a constraint satisfaction prob-

lem involving index connectivity and dimensional consis-
tency. First, we populate the index sets for all input tensors
(B1, B2, . . . , BN ) by sampling from a global index pool I,
strictly enforcing a maximum rank Rmax per tensor. We then
partition the used indices into two sets: the output indices O
(preserved dimensions) and the contraction indices S = I \O.
A critical validity constraint in einsum semantics is that a
contraction index typically bridges dimensions across tensors.
If an index s ∈ S appears in fewer than two input tensors,
the contraction is ill-defined. To resolve this, we enforce
connectivity: we iterate through S and inject any under-
represented contraction indices into an additional randomly
selected input tensor. Once the symbolic structure is validated,
we map the abstract indices to concrete runtime dimensions.
By assigning a distinct integer size to each unique index in
I and propagating these sizes to the corresponding axes of
(B1, B2, . . . , BN ), we guarantee that the generated tensors
possess compatible shapes for the specified contraction.

B. Mutation Operators

However, constraining the search space to individual einsum
operations precludes using traditional graph-level rewrite rules
as mutation operators. We address this by introducing two
invariance-based mutation strategies: Algebraic Commutativity
and Storage Format Heterogeneity.

The algebraic commutativity is grounded in tensor algebra:
assuming the tensor elements belong to a commutative ring
(e.g., the field of real numbers R), the multiplication operation
is commutative (i.e., ∀ a, b ∈ R, a · b = b · a). This property
extends to einsum operations, where the order of operands
does not alter the semantic result. For instance, the expression
A(i, j) = B(i, k) ∗ C(k, j) is semantically equivalent to
A(i, j) = C(k, j) ∗B(i, k). By permuting operands, we force
the compiler to generate different iteration schedules for the
same mathematical operation.

The second operator, Storage Format Heterogeneity, tar-
gets the complexity of sparse iteration schemes for different
compressed storage formats. In sparse tensor compilation,
the mathematical definition of a kernel is orthogonal to the
physical layout of its data. A tensor B(i, j) contains the same
nonzero values in the exact coordinates whether stored in
COO, CSR, CSC, or any other compressed storage format.
However, the choice of format significantly alters the code-
generation path, as shown in Figure 1. We leverage this
decoupling by randomly assigning distinct storage formats
to each input and output tensor in the generated einsum
expression. This forces the compiler to synthesize unique
iteration graphs and loop nests for every format combination.
Because the semantics of the computation remain invariant,
any divergence in the output across these format permuta-
tions indicates a compilation fault in handling specific access
patterns or compressed data formats. By composing these
two mutation operators—permuting operand order and vary-
ing storage formats—we create a rich space of semantically
equivalent test programs from a single einsum expression.
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Execution Results

Results ComparatorFuzz Driver Bug Report

Main Fuzzer

Random Kernel Generator Mutator

STCPlug-&-Play Translator

Random Reference
Program

Random Reference
Program Multiple Mutated

Programs

STC specific
program

Fig. 2: The main fuzzing loop. The system generates a random tensor program and a few mutated variants. Both versions are
compiled and executed, and the outputs are compared to identify mismatches indicating compiler bugs.

C. Language-Agnostic Architecture

While our mutation operators generate a rich space of
abstract test programs, executing them requires navigating the
syntactic fragmentation of the STC landscape. Since most
STCs operate as macro expanders within high-level host
languages (e.g., C++ for TACO, Julia for Finch), a direct-
generation approach is not inherently portable. To ensure
broad compatibility, we designed a generic JSON abstraction
layer that captures all semantic details of the synthesized
kernel, including randomized storage-format configurations.
This design shifts the integration burden from the fuzzer to
a thin abstraction layer: compiler developers can integrate
their tools simply by implementing a lightweight translator
that parses this JSON schema and emits the corresponding
domain-specific sparse tensor program.

Figure 2 illustrates the decoupled execution workflow of
our fuzzer. The core fuzzing engine is isolated from the
target STC and interacts solely through the abstraction layer.
At runtime, the fuzzer first dispatches a randomly selected
reference program to the target STC via the translator. Upon
successful execution, it generates semantically equivalent mu-
tants—applying the commutativity and storage format hetero-
geneity operators—and executes them against the same back-
end. The fuzzer then acts as a metamorphic oracle, comparing
the tensor outputs of the mutants against the reference result.
Any discrepancy flags a correctness violation in the STC’s
iteration schemes. This plugin-based architecture ensures the
system remains extensible to future research and industrial
compilers.

D. Program Execution & Bug Detection

Executing a tensor kernel requires not only the code but
also valid input data. Complementing its program generation,

TENSURE automatically synthesizes small input tensors that
strictly adhere to the dimensional consistency of the einsum
specification. Once the reference program successfully com-
pletes execution, its output is recorded as the ground truth. The
mutated program is then executed, and its results are compared
against this baseline. If a discrepancy is detected, TENSURE
aggregates the input tensors, both program variants, and their
respective outputs into a detailed bug report.

V. EVALUATION

To empirically quantify the advantage of our generation
strategy, we established a baseline using Grammarinator [31],
a state-of-the-art grammar-based fuzzer configured with a stan-
dard context-free grammar for einsum notation. We conducted
a large-scale comparative study, synthesizing a corpus of one
million (106) kernels using both the baseline and our custom
generator.

The results reveal a stark disparity in the efficiency of the
generation. While our constraint-based algorithm guarantees
a 100% validity rate by construction, the grammar-based
baseline produced valid kernels in only ∼3.3% of attempts.
The vast majority of grammar-generated inputs were rejected
due to dimensional inconsistencies. This result confirms that
generic grammar fuzzers are fundamentally inefficient for
tensor compiler testing, as they waste over ∼96% of the
fuzzing budget on syntactically valid but semantically mal-
formed inputs.

We integrated our constraint-based einsum generator into
the TENSURE framework to serve as the core input synthesis
engine. To evaluate its effectiveness, we conducted a sustained
six-hour fuzzing campaign targeting two state-of-the-art sparse
tensor compilers: TACO and Finch, and the results can be
found in Table I.
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TABLE I: Bugs found by TENSURE over a 6-hour fuzzing
campaign.

STCs #Iterations STC-NA C-Bugs WC-Bugs

TACO 267k 236k 14.4k 5,758
Finch 1,619 7 57 0

Note: STC-NA: Not Acceptable Input for STC; C-Bugs: Number of Crash
Bugs; WC-Bugs: Number of Wrong-Code Bugs (Silent Errors). ’#Iterations’
denotes total fuzzing iterations.

During the fuzzing lifecycle, TENSURE categorizes execu-
tion anomalies into three distinct failure scenarios that vary
in diagnostic fidelity. The first scenario involves the failure of
the initial reference kernel; since many STCs support only a
strict subset of the einsum standard, these rejections frequently
stem from unsupported features rather than genuine defects.
The second scenario occurs when the reference kernel executes
successfully, but a semantically equivalent mutant triggers a
compilation error or runtime crash. While this often indicates
a valid crash bug, it may also stem from gaps in the compiler’s
support for specific iteration schemes. The third and most
critical scenario arises when both the reference and mutant
programs execute successfully but yield divergent outputs.
This constitutes a functional correctness violation, or silent
miscompilation. Unlike crashes, which are often caught by
runtime assertions, these divergences indicate that the compiler
has generated incorrect sparse iteration schemes for a valid
mathematical operation.

A. TACO Evaluation Results

Among the valid einsum operations accepted by the com-
piler’s frontend, TENSURE exposed defects in approximately
∼65.2% of cases. Crucially, ∼18.6% of these failures were
classified as critical miscompilations (wrong code bugs),
where the compiler silently generated incorrect code.

We attribute this high volume of defects to two primary
factors. First, the reported figures reflect total failure counts;
determining unique root causes would require exhaustive man-
ual inspection, which was infeasible given the scale of failures.
Second, TACO was designed primarily as a foundational re-
search prototype to demonstrate sparse compilation concepts,
rather than as a production-hardened system. As the project
is no longer actively maintained or accepting bug reports, we
focused our analysis on aggregate failure rates to demonstrate
the fuzzer’s efficacy, rather than performing granular dedupli-
cation for reporting purposes. Due to the black-box nature of
TENSURE, reliable deduplication is inherently difficult, as a
single underlying compiler defect can be triggered by multiple,
syntactically distinct einsum expressions.

B. Finch Evaluation Results

While our campaign against TACO evaluated over 267,000
kernels and uncovered thousands of defects, the evaluation
on Finch was constrained by significant compilation latency,
completing only 1,619 iterations in the same six-hour win-
dow. Despite this reduced throughput, TENSURE successfully

Fig. 3: Runtime Comparison: TACO vs Finch. The time axis
uses a log scale to capture the disparity in compilation times.

identified 57 crash bugs in the Finch compiler. No silent
miscompilations were detected within this limited sample size,
though the presence of crash-inducing inputs confirms the
fuzzer’s ability to stress the Julia-based infrastructure.

Two factors explain this disparity. First and most signifi-
cantly, the compilation time for Finch kernels is the primary
bottleneck. As shown in Figure 3, TACO processed a single
kernel in approximately 64 ms, whereas Finch required over
181 s per kernel. The complicated data layout of sparse tensors
adds significant overhead to the Initialization and Computation
compilation stages, a cost that is incurred repeatedly for every
iteration. Second, the current evaluation was restricted to
a preliminary six-hour window; we reserve more extensive,
longitudinal fuzzing campaigns for future work.

One way to improve throughput is to reduce the granularity
of the test variations. By isolating changes to specific expres-
sions, we could allow the Julia compiler to only recompile
the mutated parts instead of the whole program. However, this
requires structural changes and specialization of the fuzzer.

VI. DISCUSSION AND FUTURE WORK

A persistent challenge in validating numerical software is
the handling of floating-point determinism. While our mutation
operator exploits the commutative property of einsum opera-
tions, this high-level reordering often compels the compiler
to alter the low-level reduction schedule. Since IEEE-754
floating-point arithmetic is not associative, these schedul-
ing changes introduce minor numerical deviations. Currently,
TENSURE employs a relaxed ϵ-based comparator to tolerate
this noise; however, this introduces a trade-off in which loose
tolerances may mask subtle correctness bugs. In the future,
we will mitigate this by introducing integer-only test modes
to validate synthesized control flow strictly. This approach
eliminates numerical noise, enabling the unambiguous dis-
tinction between valid algorithmic reordering and genuine
miscompilation.

Beyond addressing precision challenges, a promising ap-
proach for enhancing the fuzzer is the systematic exploita-
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tion of tensor transposition. Currently, our strategy relies
on operand commutativity and storage format heterogeneity.
However, by leveraging the algebraic invariance of tensor
contractions under index permutation, we can introduce a new
class of Transpose Mutation Operators. These operators would
transform the input tensors by permuting their dimensions
(effectively computing AT ) while adjusting the contraction in-
dices to preserve semantic equivalence. This targeted approach
would rigorously stress-test the compiler’s ability to handle
permuted access patterns, exposing defects in the index map
generation logic that simple operand reordering cannot reach.

Moreover, we do not employ advanced deduplication strate-
gies for redundant bug reports (Section V-A), nor do we imple-
ment compiler-specific optimizations to accelerate compilation
times for targets like Finch (Section V-B). Addressing these
challenges would require inspecting internal compiler states or
tailoring the generator to specific backends, modifications that
would fundamentally alter TENSURE from a general-purpose
black-box fuzzer into a specialized grey- or white-box tool.

In future work, we plan to expand our evaluation by
benchmarking TENSURE against a broader range of state-
of-the-art baselines [33], [35], [36] to further validate its
efficacy. Finally, we aim to demonstrate the extensibility of
our framework by integrating emerging platforms such as the
MLIR Sparse Dialect and PyTorch Sparse. While integrating
PyTorch Sparse is straightforward due to its native einsum
support, targeting MLIR Sparse Dialect presents a significant
semantic gap, as the dialect does not directly consume high-
level einsum declarations. Consequently, this integration will
require enhancing our abstraction layer to translate our JSON-
based intermediate representation into the MLIR Sparse di-
alect, thereby enabling a robust comparative analysis of diverse
sparse compiler infrastructures.

VII. RELATED WORK

Automated compiler validation is a well-established area of
research. The seminal work of Csmith [14] demonstrated the
efficacy of random differential testing, revealing hundreds of
bugs in GCC and LLVM by generating valid C programs from
scratch. Building on this foundation, subsequent frameworks
such as Orion [17] and YarpGen [15] introduced sophisticated
mutation-based strategies. These tools create semantically
equivalent test cases by injecting dead code or simplifying
arithmetic expressions.

The proliferation of deep learning compilers has cat-
alyzed the development of specialized testing frameworks.
NNSmith [21] pioneered the constraint-based generation of
valid computation graphs, excelling at verifying diverse graph
topologies and operator combinations. Building on this foun-
dation, PolyJuice [22] employed equality saturation to syn-
thesize semantically equivalent graph variants, specifically
targeting defects in graph-level optimizers. At the same time,
HiraGen [37] focused on stressing high-level optimization
passes through systematic graph mutations.

More recently, Large Language Models (LLMs) have been
adapted for input generation. TitanFuzz [38] utilizes LLMs in

a black-box manner to synthesize operator sequences without
internal compiler knowledge. In contrast, WhiteFox [39] intro-
duces a white-box approach that leverages LLMs to analyze
the compiler’s source code and optimization passes to generate
targeted test inputs. However, all these frameworks primarily
target dense computation graphs constructed from standard
operators, leaving the specific challenges of sparse tensor
compilation and lowering phases largely unaddressed.

The landscape of sparse compilation is rapidly evolving,
driven by the need to decouple algorithm specification from
data representation. TACO [6] pioneered the concept of
format-agnostic compilation, introducing a lattice-based theory
to synthesize code for arbitrary sparse tensor formats. This
foundational work has since been adopted by modern frame-
works, including MLIR’s Sparse Tensor Dialect [9], Finch [7],
and TVM’s SparseTIR [8], as well as industrial extensions to
XLA [29] and PyTorch [11], [30]. As these systems transition
from research prototypes to critical production infrastructure,
the need for robust, specialized testing frameworks becomes
increasingly acute.

Grammar-based fuzzing is a standard technique for test-
ing language processors. Tools such as Grammarinator [31],
LangFuzz [32], and Nautilus [33] generate inputs by travers-
ing formal grammars, proving highly effective for syntactic
testing across a wide range of languages. However, generic
grammar-based fuzzers, which typically operate on Context-
Free Grammars, lack the intrinsic mechanism to enforce these
semantic constraints required by the sparse tensor programs in
einsum notation.

VIII. CONCLUSION

In this paper, we present TENSURE, the first extensible
black-box fuzzing framework specifically architected for the
automated testing of STCs. Unlike prior frameworks con-
strained by fixed operator libraries [21], [22], TENSURE
leverages einsum notation as a fully general input abstraction
to synthesize arbitrary tensor contractions. This approach by-
passes the limitations of standard operator graphs, effectively
stressing the compiler’s synthesis algorithms for unconven-
tional operations and exposing corner cases in critical lowering
phases.

By combining a constraint-based generation algorithm that
guarantees 100% validity with a metamorphic oracle leverag-
ing algebraic commutativity and storage format heterogene-
ity for semantic-preserving mutation, TENSURE overcomes
the limitations of traditional grammar fuzzers to rigorously
validate sparse iteration schemes without a trusted reference
compiler. We demonstrated the utility of TENSURE by target-
ing two distinct STCs, TACO and Finch. Our evaluation of
TACO revealed significant robustness issues, with the fuzzer
exposing crashes or miscompilations over ∼60% of generated
test cases. These findings, alongside the successful adaptation
to the Finch ecosystem, underscore the fragility of the current
sparse compilation landscape and highlight the necessity of
specialized tools like TENSURE to ensure the reliability of
next-generation infrastructure.
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